
On the scale-invariant distribution of the diffusion coefficient for classical particles diffusing in

disordered media

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 39

(http://iopscience.iop.org/0305-4470/26/1/009)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys A: Math. Gen. 26 (1993) 39-50. Printed in the UK 

On the scale-invariant distribution of the diffusion coefficient 
for classical particles diffusing in disordered media 

Yan-Chr %ai and Yonathan Shapk 
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, 
USA 

Rsei~ed 21 May 1992, in 6nal form 23 July 1992 

AbstraeL The saiing form of the whole distribution P ( D )  of the random diffusion 
coefficient D ( z )  in a model of classically diffusing panicles i s  investigated. The 
renormalization group appmach above the lower critical dimension d = 0 is applied 
to the distribution P ( D )  using the n-replica approach. In the annealed appmximation 
(n = l), the inverse Gaussian distribution is found to be the stable one under remling. 
?his identification is based on symmetry argumenu and subtle relations between this 
model and that of fluctuating interfaces studied by Wallace and Zia. The renormaliation- 
group flow tor the ratios between subsequent cumulanu shows a regime of pure diffusion 
for mall disorder, where P ( D )  -+ 6 ( D  - D), and a regime of strong disorder in 
which the cumulants grow infinitely large and the diffusion process is ill defined. 'Ihe 
boundary between these two regimes h asociated with an unstable 6xed-point and 
subdiffusive behaviour (2*) ,., For the quenched (n -+ 0) case we find that 
unphysical operators are generated raising doubu on the renonnalizability of this model. 
Implications for other random systems near their lower critical dimension are discussed. 

1. Introduction 

The asymptotic behaviour of classical particles diffusing in a disordered media has 
been the focus of many recent investigations (for a recent review see [l]). The models 
which have attracted most attention are formulated in terms of random transition 
probabilities or local random quenched forces. In most of these problems d = 2 is 
a special critical dimension and most attention has been focused on the anomalous 
diffusion which usually occurs for d < 2 [2-7l. The anomalous diffusion is manifested 
by the long-time behaviour of the form: 

( S Z ( t ) )  - t z p  (1) 

with 2p < 1 (2p > l), the behaviour is said to be sub- (super-) diffusive. Attention 
has also been devoted to a simpler model in which the diffusion constant D ( z )  is 
a local quenched random variable and the diffusion equation for the local density 
p ( z , t )  is 

This equation also describes the continuum limit of a random resistor network in 
which D ( s )  is the local conductance. In this context one can define a Hamiitionian 
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& = ' JddzD(z)(VV(z))*,  2 where V(z) is the local voltage. In the physical 
problem in which the D ( z )  are themselves fluctuating dynamical mriables the 
partition function (annealed average) required averaging, while if the D ( z )  are 
frozen, it is the free energy which should be averaged (quenched average). 

The local D(z) are expressed as a sum of a uniform part b and a deviations 
part AD(=): 

Y-C Eai and Y Shapu 

(where 6 D ( z )  = AD(z)/2 was introducted for computational convenience). This 
model was considered somewhat trivial because for weak disorder, A DID < 1, there 
is an asymptotic normal diffusive behaviour at any dimension d > 0 (the irrevlevance 
of the disorder near the pure diffusive ked-point is explicitly given later). 

However, this does not preclude a non-trivial behaviour for the strong disorder 
regime. The existence of such a regime will be manifested by a finite basin of 
attraction of the pure diffusive ked-point in the space of all possible probability 
distribution P(D) for the locally uncorrelated diffusion constants. This space may 
be represented by the couplings g@) related to the cumulants of the distribution by 

( 6 D ( z ) 6 D ( y ) ) ,  = 2!g(')6(z = y) 

( 6 D ( z ) 6 D ( y ) 6 D ( z ) ) c  = 3!(-1)g(3)6(z = y = z )  

... ... 
( 6 0 ( 2 , ) .  . . 6 D ( z k ) ) ,  = k!(-l)kg(k)6(z1 = z2 = ' ' '  = 4. (5) 

The central question we set ourselves to address in this work is whether there 
exists a non-trivial distribution that will be associated with the 'critical' behaviour on 
the separatrix bordering this basin of attraction in the cumulant's infinitedimensional 
space. There may be more than one such distribution or even a whole family of 
them depending on the renormalization-group (RG) Row on the separatrix ('critical 
manifold') itself. 

However, even the existence of such one scale-invariant distribution is far from 
trivial since the theory may be either non-renormalizable (if an infinite number of 
new relevant couplings are generated) or renormalizable in a larger 'unphysical' space 
(if relevant operators, distinct from the above cumulants, are generated). 

Similiar questions have recently arisen in the study of quantum diffusion 
(localization) where it was shown that the theory is renormalizable if the whole 
distribution of the conductance is considered [%lo]. The distribution takes three 
different forms depending on whether the system is metallic, insulating or at criticality 
in between [SI. Similar questions of renormalizability always arise when a random 
system is considered near its lower critical dimension. For non-random models 
symmetry ensures full renormalizibity near the lower critical dimension in which they 
have an infinite number of marginal operators mixed by the RG flows (e.g. O( M) 
symmetry [ll] for the M-component Heisenberg model in d = 2 + 6). For random 
systems the effective replicated Lagrangian has a larger number of couplings without 
having larger symmetries to impose constraints on the renormalized couplings to be 
related to each other (as to preserve these symmetries). So the question of whether 
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random systems are renormalizable near their lower critical dimension is much more 
delicate. While the quantum diffusion in d = 2+ 6 is an example of a renormalmble 
theory [%lo], the random-field O( M) model in d = 4+ c provides a counterexample 

We therefore hope that our systematic study of another such system will help to 
shed more light on this puzzling question. 

The paper is organized as follows. In the next section (2) the n-replicated 
Lagrangian will be derived. From this Lagrangian, which has the cumulants of 
the initial distribution related to its bare couplings, all correlation functions may 
be derived. In section 3 we analyse the so-called annealed approximation ( n  = 1) 
first by the standard RG approach and then by a search of the universal distribution 
based on symmetry. Section 4 is devoted to the study of the quenched average 
( n  -+ 0). The problems encountered are discussed. In section 5 we summarize the 
implications of these investigations for the diffusion problem, in particular, and for 
random systems in general. 

P21. 

2. The replicated Lagrangian 

Without lasing generality, we assume all the particles to be at 2 = 0 at the initial 
time t = 0, namely 

dz,O) = 6(=). (6) 

The Laplace transform of p(z , t )  is defined as 
m 

p(z,m2) = 1 dtp(z,t)e-"*'. (7) 

p ( z ,  m2) obeys the equation 

m 2 p ( z , m Z ) -  p ( z , O )  = V*[D(z)V],6(z,m2) (8) 

m2p(z ,m2)  - V . [ D ( z ) V ] p ( z , m 2 )  = 6(1). (9) 

C(z,m2) = G(z,mZ) (10) 

G(z,i) = (dz,t)p(O,O)). (11) 

or 

We may identify p(z,m2) with the Green function 

which is the Laplace transform of the time domain Green function 

All scaling properties may be extracted from the large 5 and t (or small m2) 
behaviour of these Green functions. To be able to average these correlation functions 
over the realizations of the disorder we Erst express them as a functional integral in 
the standard form: 
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where 
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t [+]  = Jddr+[$mz - V .  ($D(z)V)]+ 

t [ 4 ]  = Jddr{~m'+' + ;D(z)(V+)'}. 

(13) 

or, after integration by parts and neglect of an unimportant boundary term, 

(14) 

The averages over the disorder may be obtained by utilizing the replica trick. 
The n-replicated partition function is obtained by including n fields +"(z), (a = 
1,2, ..., n): 

with 

Since liih+u(Zn)diso,der = 1, we may eliminate the denominator in equation (12), 
and calculate the average Green function 60m 

Since the quenched average is usually difficult to perform the 'annealed' 
approximation is often used. It consists in averaging independently the numerator and 
the denominator io equation (12). This is also equivalent to keeping a single replica 
or averaging ZR in equation (15) with n = 1. Therefore we shall, in the rest of this 
section, analyse the generalized field theories with t"[+*] for any n. The results of 
specific cases of annealed (n = 1) and quenched (n -, 0) averages are discussed 
in the next two sections. Let us use the vector notation + = ( + I ,  @,... ,+"). The 
replicated Lagrangian may be separated into a free part and an interacting part, 
En = tu + t, where 

tu = ;Jddz{D(V+)'+ mZ(+)'} (18) 

and 

ti, = ddz{6D(z)(V4)'}. (19) J 
The average over the disorder yields 
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where g(k) are the couplings defined in equation (5). We therefore have to apply the 
RG analysis to the following averaged partition function: 

(21) 

for simplicity we shall choose D = 1 in the forthcoming calculations. Also in 
the renormalization scheme we choose to keep this term constant. ?b make it 
dimensionless 4 should carry dimension of [4] = L'-d/2. Hence [(Vq5)z] = L - d ,  

Therefore under rescaling L + L / b ,  g ( k )  -+ b-(k- ' )dg(k)  and g ( & )  are irrelevant 
near the free Gaussian theory for any dimension d > 0. We also observe that d = 0 
is the critical dimension at which these couplings become marginal. The natural small 
parameter will thus be E = d. In the next sections we go beyond the dimensional 
analysis by utilizing first the RG approach and then an alternate approach based on 
possible symmetries of the non-trivial fixed-point distribution. 

and [g(k)] = L(k--')d.  

3. The annealed (n = 1) approximation 

We begin our analysis with the consideration of the simpler annealed approximation 
which corresponds to the single-component field 4. We begin by demonstrating the 
problem that arise in taking the RG mute and then show how these diaculties may 
be circumvented to find the scale-invariant distribution. 

3.1. RG approach 

'RI go beyond the naive dimensional analysis we need to expand exp{ -Ckg(k )  
[(V4)Z]k} in a power series, separate and integrate momenta A / b  < q < A (where 
A = 1 / a  is the boundary of the Brillouin zone) using e-Ho, re-exponentiate, and 
rescale all momenta q -+ bq so as to obtain a new effective Lagrangian. This can be 
done diagrammatically and here we only give the recursion relations for k = 2 , 3  to 
order one loop (1 = In b): 

Similar expressions may be derived for all g ( k ) .  They will take the form 

where pp) is the same beta function calculated at E = 0. Since pik) have both 
positive and negative terms each of them has zeros. The challenge is to find at least 
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one common zero, g@) = g(k)' for all k, where they all vanish simultaneously. We 
also note that the gs will be generated under the RG recursions once the bare value 
of one of them is not zero. However, different couplings (not cumulants of P( D)) 
will not be generated and the space of all gs is closed under the RG transformation. 
These equations also tell us that at the fied-point g(k)' - ck-l and we may express 
them in terms of wefficients ak such that 

Y-C %ai and Y Shapir 

g("* = a k ' k - l .  (2% 

a3 = &a, ( l -  %a2) 
a4 = 1 - 10a,a, - Fa;  etc. 

Using the equations pik) = 0 all at may, iteratively, be related to a2, e.g. 

We can also deduce some information on the behaviour away from the fixed-point. 
suppose we try to rescale all g@) multiplicatively 

(26) g ( k )  = C(l)k--Lg(k)* 

very close to the fixed-point C(0) N 1, then from equation (26) 

But on the other hand, from equation (24) 

Equating the two equations (27) and (28) we obtain 

from which we identify C as a relevant scaling field near the fixed-point (C = 1) with 
scaling exponent = c. 

3.2. Znvuriant cumulant generaringfinc~on: a search by symmetty 

Instead of looking for the invariant distribution based on the recursion relations 
(which seems pretty hopeless) we shall base our search on global symmetry 
considerations. We shall look fust at the moment generating function: 

U .  dD P ( D ) c D '  = E(-l) k(Dk)  C 
h?! 

k = l  

Comparing with equation (S), we have 

f W = O  
f'(0) = 1 
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If we can tind a function f(u) such that for 2u = (V4)2 the integral 

will be invariant under renormalition, then the corresponding P( D )  (to be obtained 
by inverse Laplace transform of ef(u) ) will also be invariant. 

So the problem has been reduced to tinding the function f(u) for which E(f) 
is invariant. This search must be based on symmetry: one has to look for a function 
f(u) for which the integral in equation (34) is an invariant under a symmetry 
operation which itself is preserved under the RG iterations (this insight comes from 
what is !mown about the role of the symmetry for RG near the lower critical dimension 
1111). Since q5 is a scalar this cannot strictly be an internal symmetry. It should be a 
symmetry that mixes the order parameter 4(1) and the coordinates I. The simplest 
one is to add 6 as the (d f 1)th component of a new vector: 

zfi = (I,4(I)). (35) 

The simplest invariant is then just the total arc length in this space: 

which is invariant under rotations in the d + 1 space and is, therefore, a natural 
candidate for e[f] in equation (34). 

This type of action has been introduced and studied by Wallace and Zia [13] to 
model interfacial fluctuation of king systems in d f 1 dimension (in this picture +( z) 
is the height of the interface, it carries dimensions of length, and the overall action 
is made dimensionless by giving dimension of Le to the temperature). 

The inverse Laplace transform of f(u) - e~-(*+2u)”zl is the inverse Gaussian 
distribution 1141. This distribution has two free parameters which may be related to 
its average and its variance, in terms of which the universal renormalized distribution 
is 

The form of this distribution remains invariant under the RG flow. The only parameter 
which changes is the ratio 

Higher cumulants are expressed in terms of R and D 

(AD.) ,  = (271 -3)!!R”-’D”. (39) 

The average D is a redundant parameter which can be given any value b > 0. 
On the renormalized trajectory the RG flow for R are determined by the equation 

d R  - = --ER f Rz dl 
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1.21 I ;:/(- < A  D >=1 I 
0.4 

0.2 

0.0 
0 1 2 3 4 

D 
Figure l. The form of the invariant inverse Gaussian distribution (equalion (37)) wilh 
parameten b = 1 and ( A D 2 )  = 1 (it U Lhe critical distribution for d = 1 wilhin he 
annealed approximation). 

which has R* = c as its fixed-point. Thus the fixed-point distribution is (choosing 
b = l ) :  

this distribution with c = 1 is plotted in figure 1. 

fured. The flow takes the distribution to 
For R < e, the RG flow will be to smaller R or ( A  D2) - 0 while keeping b 

as expected. 
For R > e , the RG flow will be towards larger R . The moments ( A D k )  diverge 

as Rk-' and the diffusion process is ill defined. (As R + CO, P ( D )  - D-3/2 for 
R-I K D K R.) 

It is also straightforward to identify c(E) discussed earlier as the scaling field 
C ( E )  = R ( l ) / R * .  Hence the crossover exponent for A R  - R - R' is 6. This 
is the only relevant direction near the fixed-point (151 and any variation from the 
ked-point along other directions is irrelevant, namely the fixed-point is stable in all 
other directions in this parameter space and the critical manifold (the separatrk) has 
codimension one. Operators which break the 4 -t -4 symmetry or which contain 
p e r  of 4, rather than of its gradient, are also relevant [U] but are not important 
in the present context (besides m24* which is discussed next). 

3.3. Anomalous diffusion on the ctitical manifold 

For any distribution on the critical manifold the asymptotic scaling behaviour will be 
determined by the RG flows near the fixed-point. These are expected to be different 
from the simple diffusion which occurs near the free Gaussian fixed-point. 
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At the fixed-point the field q52 will aquire anomalous dimension in order to 
keep b (and all the rest of the couplings) fixed. The anomalous dimension will be 
exactly that associated with scaling field c-I( 1 )  at the fixed-point may be interpreted 
as the renormalization factor which multiplies +2 to keep the couplings fixed. Since 
< ( I )  - eff = be, the rescaling of @ will be 

(43) 4 2  ~ c-142  ~ bd-2-t 2 4 

which induces an anomalous rescaling of the Laplace transform parameter m2: 

mz + mZbz+' (44) 

t -+ tb-'-' (45) 

which by its definition scales as I / t .  Hence the time 1 will rescale as 

while length rescales as b-l and, therefore, 

(46) ( ~ 2 )  I b-2 ~ f2/(2f'). 

Hence the diffusion is anomalous with exponent p in equation (1) given by 

Although locally stable we cannot prove that this fixed-point is unique. This 
question could he explored looking for all possible functions f (  ( V4)2) which are scale 
invariant. One way to approach the problem is to ask which non-linear symmetries 
are preserved under RG. The 'Euclidean' symmetry is one of them and the action 
in equation (36) is its only invariant. We cannot rule out, however, the possibility 
of other preserved symmetries with other invariants. It will be "ry interesting if 
this general question could be investigated more systematically. If other fixed-points 
exist they may not follow the simple gap scaling above, and a 'multifractal' behaviour 
Gillnot be N k d  Out. 

4. The quenched average ( n  -+ 0) 

Our goal is to pursue the Same successful route we followed to the solution in the 
annealed approximation, for the quenched case as well. We therefore repeat the 
RG calculation for general n (n # l),  and continue it analytically to zero. Here, 
however, we encounter a new difficulty: the space spanned by the couplings g ( k )  is 
not closed under renormalization. 

but similar behaviour occurs for 
higher powers as well (see appendix). The term in the bare Lagrangian is of the form 

We shall explain it for terms to order 
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'lb order (g(2vu))z the contraction of two such terms not only give rise to a 
renormalization of g(*-") itself but also to the generation of term of the form 

Y-C Eai and Y Shapir 

The complete recursion relations are given in the appendix. Clearly such a term 
takes IS outside of the realm of the diffusion model with which we began. If we 
insist on still following the RG flow for a larger number of unphysical parameter 
spaces we can generalize the approach based on symmetry discussed earlier for the 
case n = 1 to general n, by looking at a vector in the d + n dimension space 
( 2 1 , . . . , 2 d , ~ 1 ( z ) , . . . , ~ n ( z ) )  . The invariant area in thispace is 

S[4P(z)] = /ddz(detg)'/ ' (49) 

with gi j  = 6ij + E:=, ai$Ua,@e. 
Although no distribution may correspond to this function (since it cannot be a 

cumulant generating function) there is a non-trivial fixed-point for finite n. The 
incomplete one-loop analysis of Lowe and Wallace [lq yields R' = E / n  and will 
diverge in the n -t 0 limit. If this behaviour survives for a larger number of loops, 
it would imply that even in the larger space the trivial fixed-point is the only one 
accessible by the RG approach (which still leaves the possibilty of non-perturbative 
strong coupling behaviour). 

5. ConcIusions 

In view of the new understanding acquired in the quantum diffusion problem on the 
importance of renormalizing the full conductance distribution [%lo] (rather than the 
first two moments alone), we have addressed the question of the distribution of the 
diffusion constant in random classical diffusion. We have chosen here the simplest 
model for diffusion in disordered media which has d = 0 as its critical dimension. 
Our analysis was performed on the replicated Lagrangian in which the cumulants of 
the distribution are related to the coupling constants. 

We first looked at the annealed approximation for which we could identify the 
invariant distribution. We have found a non-trivial fixed-point along the renormalized 
trajectory separating a free Gaussian diffusion ffied-point for small ( A D 2 ) / 8 2  from 
a regime where the cumulant ratio diverges ( A D ( k + l ) ) / ( A D ( k ) )  - 03. At the 
fixed-point itself an anomalous diffusion (z2)  - t ( l -e ) /z  was found. 

For the quenched average n - 0 our results are so far negative: the theory is not 
renormalizable because unphysical terms are generated under renormalization. Such 
behaviour may occur in other random system near their lower critical dimension. 
This may also indicate that an even more general approach (for example including 
the possibilty of replica symmetry breaking) may be necessary. Other investigations 
of the distributions of the appropriate physical quantities in other random models 
may shed more light and will be most noteworthy. 
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Append= 

In this appendix, we present the recursion relations of two lowest-order couplings in 
equation (49) for the general n approach. As mentioned in section 4, we need to 
consider other (cross) terms like the one in equation (48) which do not appear in 
the original Lagrangian in equation (21). Including the generated terms, one should 
rewrite the Lagrangian as follows 

L [ Y (  z ) ]  = 1 dd+$ aiqPai&' - 2 c [g (2 ," ) (  ai@ ai@ 8, @a, @) 
a,i ;,j 

+ g(UJ)( ai4ffa;C#Paj+0aj ,#JP)] 

- 
[ d 3 7 " ) (  ai V a i Q  xa j  4paj @)(akC a k  $7 1 

ff A r  U$ 

+ g('J)(ai +"ai +a)( a, @a, $7 ) (8, dJPa*P) 

+ S(U,3)( a , y  a;+%a, 67 aj P ) ( ak4Pak47 )I 
+higher power terms. (50) 

By diagrammatic calculations, we found the following recursion relations for g(*,") 
and g(u,z) (to order one loop): 

+ (16n + 32)g(09.2)g(2r") + (271 + 14)(g("12))2 

For the case n = 1, the distinction between the two terms in equation (SO) with 
coefficients g(z@),g(u,2) disappears, so one can identify g(z)  in equation (22) as the 
sum of g(zio) and g("v2) in equation (50). For the same reason, g(3) in equation (22) 
is the sum of g(3*u), g('S2) and g(u,3). Therefore the sum of these two equations is 
identical to equation (22), for n = 1. 
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